STAT165/265 HW 8

March 14, 2025

Due Friday, March 21, 2025 at 11:59pm

Deliberate Practice: Invalidating Considerations

Expected completion time: 120 minutes

Graded on accuracy

This exercise follows the activity in last week's discussion. We will use the following simplified model for invalidating considerations:

- Suppose you want an 80% confidence interval around some quantity
- You have an initial distribution p_0 for what happens in a "normal" world. For example, maybe this is the distribution that you get by looking at a reference class.
- After brainstorming invalidating considerations, you realize that there is a small probability ϵ that you are instead in a "crazy" world, in which case your distribution is instead p_1 .
- Your new probability distribution is therefore the mixture $(1 \epsilon)p_0 + \epsilon p_1$.

For each of the following examples of p_0, p_1 , and ϵ , do the following:

- Give an 80% confidence interval when accounting for the ϵ probability of a "crazy" world. Your interval should be centered, i.e. your lower and upper bounds should be the 10th and 90th percentiles of the mixture distribution.
- Confirm your reasoning by simulation: using Python, draw 1000 samples from $(1 \epsilon)p_0 + \epsilon p_1$, and use them to estimate the 10th and 90th percentiles of this distribution. Sampling from a mixture happens in two steps:
 - 1. Sample from a Bernoulli(ϵ) to choose between p_0 and p_1 .
 - 2. Sample from the chosen distribution (in this exercise the distributions will be uniform).

- 1. Non-overlapping uniform distributions
 - $p_0 = \text{Uniform}(0, 2)$
 - $p_1 = \text{Uniform}(2.5, 3)$
 - (a) $\epsilon = 0.05$, (b) $\epsilon = 0.1$, (c) $\epsilon = 0.2$

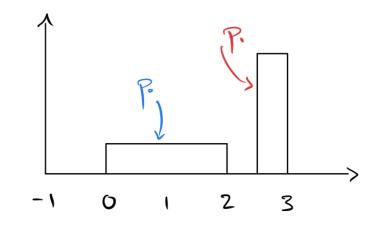


Figure 1: Non-overlapping uniform distributions

- 2. Overlapping uniform distributions
 - $p_0 = \text{Uniform}(0, 2)$
 - $p_1 = \text{Uniform}(1,3)$
 - (a) $\epsilon = 0.05$, (b) $\epsilon = 0.1$, (c) $\epsilon = 0.2$

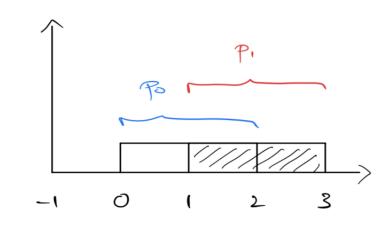


Figure 2: Overlapping uniform distributions

On Gradescope, please also submit the time it took to complete this exercise. Please note that we have a separate assignment set up for this, which is worth 1 point for this question.

Deliberate Practice: Numerical Sensitivity

Expected completion time: 180 minutes Graded on accuracy

Consider the formula for the number of days T until the peak of Omicron that we used in the *Turning Considerations into Probabilities* lecture:

$$T = \log_2 \left(N/2N_0 \right) \cdot t + \Delta_0 + \Delta_1,$$

where:

- N is the total number of future UK Omicron cases
- N_0 is the current number of UK Omicron cases
- t is the Omicron doubling time
- Δ_0 is the lag between case peak and hospital peak
- Δ_1 is the lag between single-day hospital peak and 7-day average hospital peak

Using simulations, we will assess the sensitivity of this formula to variations of its five inputs.

- 1. Suppose the inputs are sampled independently from Normal and LogNormal distributions. For this, sample α, β, γ , and δ independently from Normal(0, 1), and define the inputs N, N_0, t , and Δ as follows:
 - $N = \exp(15.57 + 0.30 \cdot \alpha)$
 - This means that N follows a LogNormal distribution with mean 6.7×10^6 and standard deviation 4×10^6 .
 - $N_0 = \exp(12.18 + 0.06 \cdot \beta)$
 - This means that N_0 follows a LogNormal distribution with mean 0.2×10^6 and standard deviation 0.05×10^6 .
 - $t = 2.4 + 0.5 \cdot \gamma$
 - $\Delta = \Delta_0 + \Delta_1 = 12 + 3 \cdot \delta.$

Sample the inputs in this way 1000 times, computing each time the corresponding value of T using the formula above. Plot the histogram of the distribution of T: what are its 10th, 25th, 50th, 75th, and 90th percentiles?

2. Increase the standard deviation of N while leaving the other distributions constant: for this, sample α from Normal(0, 4) rather than Normal(0, 1). Do the same but for Δ instead: double the standard deviation of δ , while leaving the other distributions constant. Which of these leads to the greatest increase in the variance of T?

- 3. Replace the Normal distributions by Student's t distributions: instead of sampling α, β, γ and δ from Normal(0, 1), sample them from Student($\nu = 5$). Plot the histogram of the distribution of T: how did using a t distribution instead of a Normal change the quantiles and variance of T?
- 4. Repeat your simulation with $\nu = 3, \nu = 7$ and $\nu = 9$: how does the degrees of freedom parameter ν affect the distance between the 10th and 90th percentiles of T?
- 5. Suppose now that instead of being independent, the inputs are correlated. That is, sample $[\alpha, \beta, \gamma, \delta]^{\top}$ from a multivariate Gaussian distribution:

$$\begin{array}{c} \alpha \\ \beta \\ \gamma \\ \delta \end{array} \right] \sim \operatorname{Normal}(\mathbf{0}, \mathbf{\Sigma}), \text{ with } \mathbf{\Sigma} = \begin{bmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{bmatrix}, \text{ and } \rho \in \left(-\frac{1}{3}, \frac{1}{3}\right).$$

Draw 1000 samples, and plot a histogram of the values of T. Do the 10th and 90th quantiles get closer together or farther apart as the correlation parameter ρ increases from 0 to $\frac{1}{3}$? as ρ decreases from 0 to $-\frac{1}{3}$?

On Gradescope, please also submit the time it took to complete this exercise. Please note that we have a separate assignment set up for this, which is worth 1 point for this question.

Predictions

Expected completion time: 90 minutes Graded on accuracy as part of the class forecasting competition

Make and submit predictions to the questions on this Google Form: https://forms.gle/k868FmJVhVckH23s6.

[STAT 265 only] Sums of correlated variables

Expected completion time: 60 min Graded on accuracy

Consider random variables $X_1, ..., X_k$ each with standard deviation σ . Let X^* denote their sum. That is,

$$X^* = X_1 + \ldots + X_k$$

In this problem we will explore how different levels of correlation between each X_i change the standard deviation of X^* , which we denote as σ^* .

Let

$$\vec{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

Suppose each X_i has correlation ρ with all others, so we have the following correlation matrix:

$$\operatorname{Corr}(\vec{X}) = \begin{bmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \rho & \rho & 1 & \dots & \rho \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \rho & \dots & 1 \end{bmatrix}$$

- Derive a formula for σ* in terms of k, σ, ρ.
 You may use the property Var(v^TX) = v^TCov(X)v without proof.
 Hint: You can express X* as 1X where 1 is a vector of ones.
- 2. For each correlation ρ , calculate the value of σ^* in terms of k, σ .
 - a. $\rho = 0$ (the X_i are uncorrelated)
 - b. $\rho = 1$ (the X_i are perfectly positively correlated)
 - c. $\rho = \frac{1}{2}$ (the X_i are halfway to being perfectly positively correlated)
 - d. $\rho = \frac{-1}{k-1}$ (the X_i are as negatively correlated as possible)
 - e. $\rho = \frac{-1}{2(k-1)}$ (the X_i are halfway to being as negatively correlated as possible)
- 3. Reflect on what happened to σ^* for different values of ρ . When is σ^* the largest? Smallest? How does σ^* scale as a function of k in each of the cases above?
- 4. In this next part, we will explore a creatively modified and simplified version of what led to the 2008 Financial Crisis.

Suppose each X_i represents a home mortgage and X^* is a financial instrument whose value is the sum of all the individual mortgage values. Suppose $X_i = 0.9Y_i + 0.1Y_0$ where Y_1, \ldots, Y_n are independent (for $i \neq j, Y_i \perp Y_j$), but Y_0 is the same for all of them. In other words, Y_i is different for each home mortgage, but Y_0 is a global, variable, say, one that depends on the national interest rate. Let k = 10000, and assume for simplicity that $Var(Y_i) = 1$.

- a. Compute $\operatorname{Corr}(\vec{X})$.
- b. Compute the standard deviation of X^* .
- c. Compute the standard deviation if people had failed to model the Y_0 component (i.e. let $X_i = Y_i$).
- d. What do you observe about the difference in standard deviations (1-2 sentences)?